Impact of Spike Train Autostructure on Probability Distribution of Joint Spike Events
نویسندگان
چکیده
The discussion whether temporally coordinated spiking activity really exists and whether it is relevant has been heated over the past few years. To investigate this issue, several approaches have been taken to determine whether synchronized events occur significantly above chance, that is, whether they occur more often than expected if the neurons fire independently. Most investigations ignore or destroy the autostructure of the spiking activity of individual cells or assume Poissonian spiking as a model. Such methods that ignore the autostructure can significantly bias the coincidence statistics. Here, we study the influence of the autostructure on the probability distribution of coincident spiking events between tuples of mutually independent non-Poisson renewal processes. In particular, we consider two types of renewal processes that were suggested as appropriate models of experimental spike trains: a gamma and a log-normal process. For a gamma process, we characterize the shape of the distribution analytically with the Fano factor (FFc). In addition, we perform Monte Carlo estimations to derive the full shape of the distribution and the probability for false positives if a different process type is assumed as was actually present. We also determine how manipulations of such spike trains, here dithering, used for the generation of surrogate data change the distribution of coincident events and influence the significance estimation. We find, first, that the width of the coincidence count distribution and its FFc depend critically and in a nontrivial way on the detailed properties of the structure of the spike trains as characterized by the coefficient of variation CV. Second, the dependence of the FFc on the CV is complex and mostly nonmonotonic. Third, spike dithering, even if as small as a fraction of the interspike interval, can falsify the inference on coordinated firing.
منابع مشابه
Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events
Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spi...
متن کاملNon-parametric signi cance estimation of joint-spike events by shu&ing and resampling
The ‘unitary event’ analysis method was designed to analyze multiple parallel spike trains for correlated activity. The null-hypothesis assumes Poissonian spike train statistics, however experimental data may fail to be consistent with this assumption. Here we present a non-parametrical signi cance test that considers the original spike train structure of experimental data. The signi cance of c...
متن کاملJoint probability-based neuronal spike train classification
Neuronal spike trains are used by the nervous system to encode and transmit information. Euclidean distance-basedmethods (EDBMs) have been applied to quantify the similarity between temporally-discretized spike trains and model responses. In this study, using the same discretization procedure, we developed and applied a joint probability-based method (JPBM) to classify individual spike trains o...
متن کاملCascade-induced synchrony in stochastically driven neuronal networks.
Perfect spike-to-spike synchrony is studied in all-to-all coupled networks of identical excitatory, current-based, integrate-and-fire neurons with delta-impulse coupling currents and Poisson spike-train external drive. This synchrony is induced by repeated cascading "total firing events," during which all neurons fire at once. In this regime, the network exhibits nearly periodic dynamics, switc...
متن کاملInformation through a Spiking Neuron
While it is generally agreed that neurons transmit information about their synaptic inputs through spike trains, the code by which this information is transmitted is not well understood. An upper bound on the information encoded is obtained by hypothesizing that the precise timing of each spike conveys information. Here we develop a general approach to quantifying the information carried by spi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2013